
The FTG+PM Framework for Multi-Paradigm Modelling:
An Automotive Case Study

Sadaf Mustafiz†, Joachim Denil‡,§, Levi Lúcio†, Hans Vangheluwe‡,†

†School of Computer Science ‡Department of Mathematics §TERA-Labs
McGill University, Canada and Computer Science Karel De Grote

University of Antwerp, Belgium University College, Belgium
{sadaf,levi,hv}@cs.mcgill.ca, joachim.denil@kdg.be

ABSTRACT
In recent years, many new concepts, methodologies, and
tools have emerged, which have made Model Driven En-
gineering (MDE) more usable, precise and automated. We
have earlier proposed a conceptual framework, FTG+PM,
that acts as a guide for carrying out model transformations,
and as a basis for unifying key MDE practices, namely multi-
paradigm modelling, meta-modelling, and model transfor-
mation. The FTG+PM consists of the Formalism Trans-
formation Graph (FTG) and its complement, the Process
Model (PM), and charts activities in the MDE lifecycle such
as requirements development, domain-specific design, verifi-
cation, simulation, analysis, calibration, deployment, code
generation, execution, etc. In this paper, we apply the
FTG+PM approach to a case study of a power window in
the automotive domain. We present a FTG+PM model for
the automotive domain, and describe the MDE process we
applied based on our experiences with the power window
system.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
D.2.10 [Software Engineering]: Design—methodologies

1. INTRODUCTION
In recent times, model driven engineering (MDE) has been
adopted in industrial projects in widely varying domains.
The automotive industry in particular is faced with many
challenges and opportunities.

Earlier [11], we proposed the FTG+PM framework for model-
driven software development. It is intended to guide devel-
opers throughout the MDE lifecycle. The idea behind the
FTG is similar to the Formalism Transformation Lattice for
coupling different formalisms introduced by Vangheluwe in
[18]. We go a step beyond multi-formalism modelling, and
use the notion of multi-paradigm modelling [15] as the basis
of our work. In multi-paradigm modelling, every aspect of
a problem is modelled explicitly, at the right level(s) of ab-
straction, using the most appropriate formalism(s). This is
enabled by metamodelling and model transformation.

The Formalism Transformation Graph (FTG) is a hyper-
graph with languages as nodes and transformations as edges.
It charts the relationships among the multitude of languages
and transformations used to develop systems within a do-
main. The Process Model (PM) precisely models the control
and data flow between the transformation activities taking
place throughout the software development lifecycle start-
ing from requirements analysis and design, to verification,

simulation, and deployment. We use a subset of the UML
2.0 activity diagram formalism for the PM. Our framework
is supported by AToMPM [12], A Tool for Multi-Paradigm
Modelling, for building metamodels, transformations, and
for executing the FTG+PM model transformation chain.

In this paper, we focus on the application of our approach
and demonstrate the capabilities of the FTG+PM through
the design of an automated power window. The case study
is inherently complex due to its heterogeneity and thus rep-
resentative of industrial case studies. The model artifacts
within the FTG+PM range from abstract requirements and
analysis models, to more concrete design models, to models
of source code. The discrete-time, continuous-time, discrete-
event, and hybrid formalisms used in the FTG are appropri-
ate to the levels of abstraction used at different stages of the
modelling process. The MDE process is entirely based on
models and transformations, starting from domain-specific
requirements and design models aimed at describing control
systems and their environment and finishing with Automo-
tive Open System Architecture (AUTOSAR) [2] code.

This paper is organised as follows: Section 2 describes the
application of FTG+PM to the power window case study.
Section 3 discusses related work in this area and Section 4
draws some conclusions.

2. THE POWER WINDOW CASE STUDY
We apply our approach to a concrete problem in the auto-
motive domain: the power window case study. The hetero-
geneity of components in such a system make it a suitable
candidate for illustrating the MPM nature of the FTG+PM
framework.

A power window is an electrically powered window and is
present in the majority of the automobiles produced today.
The basic controls of a power window include lifting and de-
scending the window. Functionalities are added to improve
the comfort and safety of the vehicle’s passengers.

In Figure 1, we depict a condensed version of the FTG+PM
model we have built for developing the Power Window soft-
ware controller. The power window FTG+PM was built
based on our experience with a concrete, AUTOSAR-based
physical realisation of a power window.

The model-driven development of the power window con-
troller includes several phases all of which are encompassed
in the FTG+PM model (Fig. 1). Depending on the intent,
it is possible to construct different PMs based on the same
FTG and to traverse a particular path in the graph and
apply a subset of the process for the purpose of simulation



:ModelPlant :ModelControl:ModelEnv:ModelNetwork

:ControllerToSC

:ScToPn:PlantToPN:EnvToPN

:PlantToCbd

:EnvToCbd

AND False

:ScToAUTOSAR

:ToInstrumented

:Architecture
Deployment

:ECU
Deployment

False

True

:Detailed
Deployment

False

True

:SwToC

:ArToRte:ArToMw

:CombineC

:RefineNetwork

:ToDynamic
Specification

TRUE
:ExtractTiming

Behaviour

:RefineTiming
Behaviour

:RefineTiming
Behaviour

:RefineTiming
Behaviour

True

:Boolean :Boolean

:Control DSL:Plant DSL:Environment 
DSL

:Network 
Formalism

:Statecharts

:CBD:Encapsulated 
PN

:CBD:Encapsulated 
PN

:Encapsulated 
PN

:Network 
Formalism

:AUTOSAR

:Performance 
Model

:AUTOSAR

:AUTOSAR

:AUTOSAR

:Boolean

:Boolean

:Boolean

:C-Code :C-code

:C-code

:C-Code

:Requirements 
Diagram

:CBD

:TIMMO

:TIMMO

:TIMMO

:TIMMO

Model
Requirements

SafetyAnalysis Hybrid
Simulation

Calibration
Infrastructure

EnvToCBD

Environment 
DSL

Causal Block 
Diagrams

PlantToCbd

Plant DSL

ControlToSc

Control DSL

Statecharts
Network 

Formalism
Encapsulated 

Petrinets

Hybrid 
Formalism

CombineCBD

AUTOSAR

ScToAUTOSAR

C-code SwToC

Algebraic 
Equations

ToSchedulabilityAnalysis

DEVS

ToDeploymentSimulation

Performance 
Trace 

ExecuteCalibration

Performance 
Formalism

ExtractPerformance

ToInstrumented

Architecture 
Deployment

ScToPnPlantToPnEnvToPN

CombinePN

Reachability 
Graph

HybridSimula-
tion Trace

SimulateHybrid

BuildRG

ToBinPackingAnalysis

RefineNetwork

ModelPlant ModelControlModelEnv

ECU
Deployment

Detailed
Deployment

ModelNetwork

ArToMw
ArToRte

CcombineC

SysML Req 
Diagram

TIMMO

CTL

ModelContext

ExtractRequirements

ToSafetyRequirement

ToDynamicSpecification

Extract 
Timing Behaviour

Refine 
Timing Behaviour

SysML Use 
Case Diagram

Textual 
Requirements

ModelTextualReq

Boolean

CheckCTL
CheckContinuous

Petrinets

RefineUseCases

Refine
Requirements

DEVS Trace

SimulateDEVS

Bin Packing 
Trace

CheckDEVSTrace

Schedulability 
Trace

Calculate
Schedulability

Check
BinPacking

GenerateCalibration

CombineCalibration

Refine
UseCase

Description

ModelUseCase
Description

SearchECU
SearchDetailed

Check
Schedulability

:Use Cases

:Use Case 
Diagram

:Search
ECU

:Search
Detailed

:Search
Architecture False

Schedulability
Analysis

DEVS
Simulation

BinPacking
Analysis

SearchArchitecture
Integer

:Integer

:Integer

:Integer

:BinPacking
Trace

:Schedulability
Trace

:DEVSTrace

1

2

2

1

3

1

Use 
Cases

language manual transformation automatic transformation

FTG

model
artifact

manual 
activity

automatic 
activity

PM

Figure 1: Power Window: FTG (left) and PM (right)



or verification (for instance). In the following sections, we
briefly describe each activity and show some sample models
and transformations. Due to space constraints, the meta-
models of the languages and details of the transformations
in the FTG+PM are not shown here. The interested reader
can refer to [10] for further details.

We discuss the FTG+PM model of the power window based
on the different dimensions and enablers of MPM presented
in [15]: levels of abstraction, formalisms, metamodelling, and
model transformations.

2.1 Levels of Abstraction
The power window controller is a complex, time-critical,
safety-critical, hard real-time embedded system. When given
the task to build the control system for a power window, two
variables need to be considered: (1) the physical power win-
dow itself, which is composed of the glass window, the me-
chanical lifting mechanism, the electrical engine and some
sensors for detecting for example window position or window
collision events; (2) the environment with which the system
(controller plus power window) interacts. This includes both
human actors and other subsystems of the vehicle, e.g., the
central locking system or the ignition system [15].

The level of abstraction is associated with the task to be
accomplished and is determined by the perspective on the
system, the problem at hand, and the background of the de-
veloper. At a high level of abstraction, the tasks in our MDE
process are the development activities starting from require-
ments to code synthesis. The detailed tasks are declared as
transformation definitions in the FTG and instantiated as
activities in the PM.

The MDE process comprises several activities with mod-
els at different abstraction levels. Models at a higher level
(starting from requirements models and DSMs) are refined
until the executable model level (C source code) is reached.
For each new modelling language, concrete syntax needs to
be defined in addition to abstract syntax, tailored to the
domain expert working on the specification of that model.
Our approach integrates multi-view modelling by building
distinct and separate models of the power window system
to model different aspects of the system for different in-
tentions. As an example, the domain-specific models are
mapped to Petri nets with the intention of model checking
and to CBDs1 for simulation.

Systematically and automatically deriving models of differ-
ent complexity significantly increases productivity as well
as quality of models. In particular, our deployment activity
(discussed later in this section) follows this principle.

The abstraction levels are based on the different MDE phases
in the FTG+PM. We briefly discuss these phases here.

Requirements Engineering Before any design activities
can start, requirements need to be formalised so they can
be used by engineers. Starting from a textual description
containing the features and constraints of the power window,
a context diagram is modelled as a SysML use case diagram.
The use cases are further refined and complemented with use
case descriptions. Finally, the requirements are captured
more formally in a SysML requirements diagram.

1Causal Block Diagrams (CBD) are a general-purpose for-
malism used for modelling causal, continuous-time systems,
used in tools such as Simulink

:BuildRG

:CombinePN

:CheckReachable
State

:Boolean

:Petri-Net

:Reachability 
Graph

:CTL

:Requirements 
Diagram

:Encapsulated 
PN

:Encapsulated 
PN

:Encapsulated 
PN

Encapsulated 
Petrinets

combinePN

Reachability 
Graph

BuildRG

CTL

ToSafetyRequirement

CheckReachableState

Petrinets

Boolean

:Network 
Formalism

:ToSafetyReq

Figure 2: FTG+PM: Model Checking Slice

Domain-Specific Design The control software system acts
as the controller, the physical power window with all its
mechanical and electrical components as the process (also
called the plant), and the human actors and other vehi-
cle subsystems as the environment. Using the requirements
models as a basis, we start the design activities by construct-
ing domain-specific languages (DSLs) for the Environment,
Plant, and Controller. A Network language is used to com-
bine the three design languages and identify the interfaces
between them.

Model Checking To ensure that there are no safety is-
sues with the modelled control logic, formal verification can
be carried out. The domain-specific models used for defining
the plant, environment and the control logic are transformed
to Petri nets where reachability properties are checked. It is
then necessary to transform requirements to a property lan-
guage (CTL, Computation Tree Logic in our case) so their
satisfaction can be checked on the Petri nets. In Fig. 2,
we present the safety analysis activity of the power window
PM, along with the corresponding subset of the FTG. The
FTG+PM makes causal relations between the different ac-
tivities explicit.

Simulation The piecewise continuous behaviour of the up-
and-downward movement of the window is simulated using
a hybrid formalism. The hybrid model comprises the envi-
ronment and plant models transformed into Causal Block
Diagrams (CBD) and the controller in the Statecharts for-
malism.

Deployment After the software has been created and ver-
ified, it has to be deployed onto a hardware architecture,
which contains a set of electronic control units (ECU) that
are connected using a network. Each ECU can execute a
set of related and unrelated software components. Deploy-
ment is the process of distributing these components over the
hardware architecture and making other low-level choices
such as scheduling. This can result in non-feasible solutions
where the spatial and temporal requirements are violated.
The deployment space can be searched for optimal solutions.
In the power-window system, we only focus on the real-time
behaviour, which is checked on three approximation levels.
On these levels, bad solutions are pruned while good so-
lutions can be explored further. Fig. 3 shows the actions
involved in checking a single solution at the level of bin pack-
ing analysis. Transforming to another language, executing
this new model to obtain execution traces and comparing
these traces to check a certain property is a common activ-
ity that can be seen as a pattern for all three deployment
levels in the FTG+PM of Figure 1.

Calibration To build the performance model, we can also
use generative MDE techniques. The plant model, envi-
ronment model and instrumented source code are combined
and executed in a Hardware-in-the-loop environment giving



:ToBinPacking 
Analysis

:CheckBin
Packing

:CalculateBin 
Packing

:Algebraic 
Equations

: Boolean

:BinPacking 
Trace

:TIMMO

:AUTOSAR

:Performance
Model

AUTOSAR

Algebraic 
Equations

Performance 
Formalism

ToBinPackingAnalysis

BinPacking 
Trace

Boolean

CheckBinPacking

CalculateBinPacking

Figure 3: FTG+PM: Bin Packing Slice

back execution time measurements. These measurements
are needed to calibrate a performance model that is used to
guide the deployment space exploration.

Code Generation When a solution turns out to be feasi-
ble after the three stages, code can be synthesised for each
hardware platform in the configuration (shown in Figure 1).
This includes the generation of the C code of the application,
the middleware, and the AUTOSAR run-time environment
(RTE) that is required to glue the application and middle-
ware code.

2.2 Formalisms
We have used a multitude of languages to model the power
window system at different levels of abstraction with dif-
ferent intentions. We have used a combination of UML
modelling languages, domain-specific modelling languages,
natural languages, and general purpose languages (GPLs).

• Requirements Development: specification of requirements
using textual requirements, SysML use case diagram, use
cases, and SysML requirements diagram
• Domain-Specific Design:
– Environment DSL (to describe the interaction between actors
and other subsystems)
– Plant DSL (to describe the physical processes within the me-
chanical and electrical components)
– Control DSL (to describe the logical operation of the hard-
ware components)
– Network formalism (to compose the DSMs by connections via
ports)
– Statecharts (to represent the reactive behaviour of the control
DSL)

• Model Checking: DSLs are mapped to encapsulated Petri
nets for carrying out safety analysis; reachability analysis
uses Petri nets which generates a reachability graph model;
safety and liveness properties are expressed in CTL
• Simulation: of continuous behaviour using a hybrid simu-
lation formalism (based on causal block diagrams and Stat-
echarts) and a hybrid simulation trace language (trace con-
taining a time/signal value for the continuous part and a
time/state value for the Statechart)
• Analysis: TIMMO (TIMing MOdel) [8] timing analysis,
for the maximum end-to-end latencies of the application
• Calibration: calibration infrastructure for performance mod-
els in a custom performance language (timing properties of
the software function w.r.t. a hardware type). The gen-
eration of the infrastructure is based on the environment
model, plant model, and instrumented source code (C GPL).
• Deployment:
– software deployed onto a hardware architecture using the AU-
TOSAR middleware and metamodel
– timing analysis using bin packing checks and schedulability
analysis, based on algebraic equations and bin packing and schedu-

lability trace languages (containing the results of the algebraic
equations)
– deployment simulation using DEVS (a modular and hierarchi-
cal formalism for modelling and simulating systems), generating
a trace in the DEVSTrace language (containing the trace of the
simulation), and a final result as a boolean

• Code Synthesis: generation of the application code, mid-
dleware and the AUTOSAR RTE in the C GPL language

2.3 Metamodelling
The languages are metamodelled using a base formalism, in
our case class diagrams. The modelling environments are
synthesized in AToMPM from their abstract and concrete
syntax models. Due to space reasons, the metamodels are
not shown here.

For the requirements languages, we use the standard SysML
use case diagram and requirements diagram metamodels [1].
In case of the DSLs, the abstract syntax and the concrete
syntax are constructed in AToMPM based on elements spec-
ified in the requirements. For Petri nets, the UML Petri net
metamodel is used. For the encapsulated Petri nets, the
Petri net metamodel is extended with ports and a named
element class.

The meta-model of CBDs used is based on the work of
Denckla and Mosterman [4]. It contains blocks, ports and
relations between these ports. The abstract syntax used for
Statecharts is based on the UML Statecharts metamodel,
with semantics as defined by Harel [7]. The hybrid formal-
ism combines the Statechart and CBD metamodels.

For the deployment part of this work, we use a subset of
the AUTOSAR metamodel defined by the AUTOSAR con-
sortium. The requirements language, TIMMO, extends the
AUTOSAR metamodel with timing concepts defined in [8].
The algebraic equations language is based on simple mathe-
matical formulas with float values, variables, equalities and
algebraic operators. The algebraic traces gained from ex-
ecuting the algebraic equation contain a component name
and float value representing either the load on the hardware
component or the response time of the software function.
The simulation model is based on the DEVS formalism. The
DEVStrace language contains a time-stamp and action field.
The boolean languages and integer languages just contain a
single value with either a boolean or integer respectively.

The performance model also extends the AUTOSAR meta
model with performance properties such as worst-case ex-
ecution time, between a software function and a hardware
type. This is gained by analysing the performance trace
that contain the software function name with a float value
(representing the execution time).

2.4 The Glue: Transformations
In this paper, we elaborate on a vertical slice of the FTG+PM.
The transformations in the FTG take one of more models as
input and produces one model as output. The models that
are acceptable as inputs and outputs need to conform to
the metamodels described in Sections 2.2 and 2.3. Between
square brackets, we classify the transformations according
to [13].

ModelContext derives a SysML use case diagram (Fig 4)
based on the textual requirements. These transformations
are usually done manually by requirements engineers. Some
automatic transformations can be used to populate the use



Power Window Controller

Operate
SideWindow

Operate
RoofWindow

Open
Window

Close
Window

Lockout
Window

Lower
Window

Raise
Window

Stop
Window

<<include>> <<include>> <<include>><<include>>

<<include>>

<<include>> <<include>>
<<include>><<include>>

Roof
Window

Side
Window

Passenger
Window

Driver
Window

Central
Locking
System

1

2..*

1 1..*

1

Infrared
Sensor

1..*

Force
Detecting

Sensor

1..*

Motor

1..*

Ignition
System

1

Driver

1

Passenger

*

Switch

*

Lockout

*

Pushpull

*

Rocker

*

RollUp
Windows

<<include>>

Lift
Window

<<include>>

Figure 4: Power Window: SysML Use Case Dia-
gram

Figure 5: Power Window: Plant DSL Model

case diagram and requirements diagram. [exogenous, hori-
zontal]

RefineUseCases is a transformation between models ex-
pressed as SysML use case diagrams (Fig 4). The refine-
ment takes into consideration inputs and clarifications from
the client. [endogenous, horizontal]

ExtractRequirements takes a SysML use case diagram
and produces a SysML requirements diagram (not shown
due to space constraints) which is refined with extra func-
tional requirements and constraints based on the initial tex-
tual requirements. [exogenous, vertical]

ModelPlant maps the requirements (inputs: SysML re-
quirements diagram, use cases) to a DSL (output: Fig. 5)
to represent the plant domain. [exogenous, vertical]

PlantToPN takes a plant DSL model (Fig. 6) and trans-
forms that to an encapsulated Petri net2 [exogenous, ver-
tical]

CombinePN takes three encapsulated Petri nets (not shown
here) derived from the environment, plant and control domain-
specific models, as well as a network model that specifies
how the three communicate. The transformation outputs
a Place/Transition Petri net (non-modular), which is the
result of the fusion of the three input modular Petri nets
according to the input network model. [exogenous, hori-
zontal]

ToSafetyReq takes as input a model of the safety require-
ments, as well as the combined Petri net model represent-
ing the behaviour of the whole system, and outputs a set
of CTL formulas encoding the requirements. [exogenous,

2encapsulated Petri nets are a modular Petri net formal-
ism, where transitions can be connected to an encapsulating
module’s ports.

Figure 6: Power Window: Petri Net for Driver Win-
dow Plant Model

Figure 7: Power Window: Causal Block Diagram
(CBD) for Plant Model

SWC

ControlDrv

SWC

CmdUp

SWC

UpDrv

SWC

CmdDown

SWC

CmdStop

Figure 8: AUTOSAR Software Component Model

vertical]
Build RG takes the derived Petri net and generates a reach-
ability graph. Note that ToSafetyReq and BuildRG should
be executed in parallel. [exogenous, vertical]

CheckReachableState takes the CTL formulas and out-
puts true if the reachability analysis is successful. [exoge-
nous, vertical]

PlantToCBD transforms the plant DSL to a causal block
diagram (Fig. 7). [exogenous, vertical]

CombineCBD takes the CBDs mapped from the DSLs
and the Statechart model, and composes them to produce
a hybrid simulation model. [endogenous, horizontal]

SimulateHybrid uses the hybrid simulation model as the
source and produces a mixed continuous - discrete trace
model. [exogenous, vertical]

CheckContinuous takes the continous trace model, en-
sures that it conforms to the initial specified constraints,
and outputs a boolean value depending on the success of
the analysis. [exogenous, vertical]

ScToAUTOSAR encapsulates the given Statechart in an
AUTOSAR-compliant model (Fig 8). A single software
component is used for the Statechart while for each input
signal to the Statechart, a sensor-actuator component is
created. [exogenous, vertical]

SwToC generates AUTOSAR-compliant C code of the ap-
plication from the input AUTOSAR model. [exogenous,
synthesis]

ToInstrumented generates instrumented C code of the
application from the AUTOSAR model. This can be used



to create a performance model of the application used dur-
ing deployment. [exogenous, synthesis]

Architecture Deployment adds information on the map-
ping of software to hardware components to the AUTOSAR
model. Backtracking may take place during the exploration
of the deployment space. [endogenous, vertical]

ToBinPackingAnalysis creates an output algebraic equa-
tion from the AUTOSAR model and the performance model
to check the load of the hardware component. [endogenous,
vertical]

CalculateBinPacking executes the algebraic equations cre-
ated by the ToBinPackingAnalysis transformation. [exoge-
nous, horizontal]

CheckBinPacking checks the result of the execution of
the bin packing check with the RMA threshold defined by
Liu and Layland [9]. [exogenous, horizontal]

SearchArchitecture decides how the exploration should
proceed in case the schedulability test failed. [exogenous,
horizontal]

ArToMW generates the middleware code for a single con-
trol unit from the deployed AUTOSAR model. [exogenous,
synthesis]

ArToRTE generates the run-time environment code for a
single control unit from the deployed AUTOSAR model.
[exogenous, synthesis]

CombineC combines the application software code, the
run-time environment code and the generated middleware
code so it can be compiled. [endogenous, horizontal]

3. RELATED WORK
Research has been carried out in both academia and indus-
try on the model-driven engineering of automotive cyber-
physical systems [6, 19, 5]. [3] presents an MDE framework
based on SysWeaver for the development of AUTOSAR-
compliant automotive systems. Typical design methods used
in domains such as automotive and aerospace follow the
V model for software development [14, 16]. Prabhu and
Mosterman [17] illustrates the model-based design of an em-
bedded control systems using the power window case study.
They cover the MDE process starting from behavioural mod-
elling to code generation, and focus on the use of an inte-
grated tool suite for MDE. Many links exist with research
in process modelling. These are not described due to space
constraints.

4. CONCLUSION
We have applied the FTG+PM framework to a non-trivial
case study of the design of an automotive power window con-
troller. We have constructed the FTG and PM for the tar-
get domain. This encompasses the various phases of model-
driven development of the power window. As part of each
phase, we defined the appropriate formalism(s) and the re-
lations between them. The process model was used to guide
the development of the power window controller.

The FTG and PM we have presented can be adapted for
use in various domains. It provides a complete model-driven
process that is based on meta-modelling, multi-abstraction
and multi-formalism modelling, and model transformation.
We believe that our experiences can be useful for others
working on the development of systems in the automotive
domain. The power window FTG+PM is a skeleton which
can be extended, refined, or adapted for various techniques
and technology, for example feature modelling for software

product lines. We intend to study higher order characteris-
tics of transformation chains, and use the FTG+PM to au-
tomatically reason about the properties of chains of model
transformations. We further plan to work on integrating the
model-based testing phases in our framework and applying
it to our case study.

5. ACKNOWLEDGMENTS
Part of this work has been developed in the context of the
NECSIS project, funded by Automotive Partnership Canada.

6. REFERENCES
[1] OMG Systems Modeling Language, OMG document

number formal/2012-06-01 (OMG SysML version 1.3),
available from www.omg.org, 2012.

[2] AUTOSAR. http://www.autosar.org, 2010.
[3] G. Bhatia, K. Lakshmanan, and R. Rajkumar. An

End-to-End Integration Framework for Automotive
Cyber-Physical Systems Using SysWeaver. In AVICPS
2010, pages 23–30, 2010.

[4] B. Denckla and P. J. Mosterman. Formalizing Causal Block
Diagrams for Modeling a Class of Hybrid Dynamic
Systems. In Proceedings of the 44th IEEE Conference on
Decision and Control, pages 4193–4198, 2005.

[5] J. Friedman and J. Ghidella. Using model-based design for
automotive systems engineering - requirements analysis of
the power window example. SAE, 2006.

[6] Z. Gao, H. Xia, and G. Dai. A model-based software
development method for automotive cyber-physical
systems. Comput. Sci. Inf. Syst, 8(4):1277–1301, 2011.

[7] D. Harel. Statecharts: A visual formalism for complex
systems. Sci. Comput. Program., 8(3):231–274, June 1987.

[8] R. Johansson, P. Frey, J. Jonsson, J. Nordlander, R. M.
Pathan, N. Feiertag, M. Schlager, H. Espinoza, K. Richter,
S. Kuntz, H. Lonn, R. Kolgari, and H. Blom. TIMMO
Timing Model TADL: Timing Augmented Description
Language. Technical report, 2009.

[9] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment. J.
ACM, 20(1):46–61, Jan. 1973.

[10] L. Lucio, J. Denil, and H. Vangheluwe. An overview of
model transformations for a simple automotive power
window. Technical Report SOCS-TR-2012.2, McGill
University, January 2012.

[11] L. Lucio, S. Mustafiz, J. Denil, B. Meyers, and
H. Vangheluwe. The formalism transformation graph as a
guide to model driven engineering. Technical Report
SOCS-TR-2012.1, McGill University, March 2012.

[12] R. Mannadiar. A Multi-Paradigm Modelling Approach to
the Foundations of Domain-Specific Modelling. PhD thesis,
McGill University, June 2012.

[13] T. Mens and P. Van Gorp. A taxonomy of model
transformation. Electron. Notes Theor. Comput. Sci.,
152:125–142, Mar. 2006.

[14] P. Mosterman, J. Sztipanovits, and S. Engell.
Computer-automated multiparadigm modeling in control
systems technology. IEEE TCST, 12(2):223 – 234, 2004.

[15] P. J. Mosterman and H. Vangheluwe. Computer
Automated Multi-Paradigm Modeling: An Introduction.
Simulation, 80(9):433–450, 2004.

[16] K. Muller-Glaser, G. Frick, E. Sax, and M. Kuhl.
Multiparadigm modeling in embedded systems design.
IEEE TCST, 12(2):279 – 292, march 2004.

[17] S. Prabhu and P. Mosterman. Model-based design of a
power window system: Modeling, simulation and
validation. In IMAC-XXII, 2004.

[18] H. Vangheluwe and G. C. Vansteenkiste. A multi-paradigm
modeling and simulation methodology: formalisms and
languages. In ESS’96, pages 168–172, 1996.

[19] S. Wang. Model transformation for high-integrity software
development in derivative vehicle control system design. In
HASE, pages 227–234, 2007.


